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A numerical investigation of the velocity, pressure and vorticity fields very near the
injection of flat and thin two-dimensional gas jets or liquid sheets between two parallel
high-speed gas coflows is performed. The motivation of this research is to uncover
some basic physical mechanisms underlying twin-fluid atomization. Conservation
equations and boundary and initial conditions are presented for both single-phase
jets and two-phase liquid sheet/gas-stream systems. Both infinitely thin and thick solid
walls are considered. Apart from the gas Strouhal and Reynolds numbers appearing
in the dimensionless single-phase flow equations, the liquid Reynolds number, the
momentum flux ratio, the gas/liquid velocity ratio and the Weber number enter
the two-phase flow dimensionless formulation. The classical numerical techniques
for single-phase jets are supplemented with the volume-of-fluid (VOF) method for
interface tracking and the continuum surface force (CSF) method to include surface
tension in two-phase flow systems. Ad hoc convection algorithms in combination
with a developed version of the fractional-step scheme allows a significant reduction
of the numerical diffusion, maintaining localized and sharp interfaces. The action
of the surface tension is correctly found via the CSF with a smoothed scalar-field
approximation.

Results for single-phase jets with thin-wall injectors indicate qualitatively correct
features and trends when varying the Reynolds number and the coflow/jet ratios:
thick-wall injectors significantly modify the vorticity and pressure near fields;
increasing the Reynolds number leads to larger flow disturbances; larger coflow/jet
velocity ratios yield more perturbed near flow fields. For single-phase jets the Strouhal
number as a function of the Reynolds number follows the usual trends of flows behind
a circular cylinder.

For two-phase flows, increasing the gas Reynolds number leads to larger liquid-
sheet deformations and to a reduction of the breakup length; a plot of the gas
Strouhal number, in the presence of a liquid sheet, as a function of the gas Reynolds
number displays a monotonically decreasing curve, contrary to that for a gas jet. This
observation strongly suggests that the gas vortex shedding mechanism is modified
by the liquid-sheet motion. The gas vortex shedding frequency as a function of the
liquid-sheet oscillation frequency follows a straight line with a slope of approximately
45◦ for momentum flux ratios greater than roughly 0.45; for values below 0.45 the
gas vortex shedding frequency remains constant while the liquid sheet varies its
oscillation frequency. Increasing the surface tension leads to a larger breakup length.

† Author to whom correspondence should be addressed.
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Thin trailing edges almost double the sheet oscillation frequency and more than halve
the perturbation wavelength compared to thick trailing edges.

1. Introduction
Twin-fluid atomizers are commonplace in aircraft gas turbines and some

thermoelectric power plants. Although phenomenological rules provide reasonable
bases for design, the underlying physical mechanisms for the liquid sheet deformation
and breakup under the action of the gas streams as well as the liquid/gas dynamic
interactions are, to a large extent, not well understood.

The following historical review will solely allude to large-aspect-ratio thin flat
liquid sheet geometries. Water bells generated by impinging liquid jets on a disk were
first experimentally studied by Savart (1833) and later taken up by Taylor (1959).
Pioneering linear stability analyses of thin inviscid liquid sheets were performed by
Squire (1953) for a quiescent air stream and York, Stubbs & Tek (1953) for two
inviscid air coflows. Hagerty & Shea (1955) experimentally observed sinusoidal and
varicose modes using an oscillating nozzle.

Water fans were extensively investigated by Dombrowski and co-workers in the
1970s. For example, Crapper, Dombrowski & Jepson (1975) considered viscous liquid
and air with a slightly parabolic liquid velocity profile and an exponentially decaying
air velocity profile (quiescent air at infinity) for the basic flows; inclusion of viscosity,
apparently, widened the frequency instability range and for large liquid velocities
no maxima for the growth rate curve as a function of wavenumber for any Weber
number appeared. Air vortices were visualized and the influence of the vortex-induced
pressure field on the growth rate of the sheet perturbations was hinted at Clark &
Dombrowski (1972) conducted the first nonlinear instability analysis for a liquid sheet
via a perturbation expansion technique.

Detailed flow visualization and measurements on large-aspect-ratio liquid sheets
with two high-speed air coflows were performed by Stapper & Samuelsen (1990),
Stapper, Sowa & Samuelsen (1992) and Mansour & Chigier (1990, 1991). A close
correspondence between the spanwise/streamwise liquid filaments in these flows and
the spanwise/streamwise vorticity structures previously unveiled in a single-phase
shear layer (Lasheras & Choi 1988; Meiburg & Lasheras 1988) seemed evident; the
sheet breakup process was qualitatively described as changing from a ‘cellular’ type to
a ‘stretched streamwise ligament’ mode as the air/water velocity ratio increased. The
sheet oscillation frequency was found to depend linearly on the air velocity and to be
only a weak function of the liquid velocity. Increasing the velocity ratio caused the
sinusoidal mode to dominate the varicose one. The influence of the surface tension
and the liquid viscosity on the breakup characteristic length and time scales and,
thus, on the mean drop diameter was considered by, among others, Stapper et al.
(1992); to a large extent, the basic mechanisms are, however, independent of these
fluid properties. Lozano et al. (1996) and Vich, Dumouchel & Ledoux (1996) recently
paid special attention to the sheet instability development and growth in the very near
field behind the injection nozzle tip. Barreras (1998) performed detailed visualizations
of both the liquid sheet and the vortex systems of the adjacent air coflows as well
as extensive measurements for varying liquid and air velocities using laser-induced
fluorescence, concluding that the air flow dynamics has a direct effect on the liquid
sheet motion. Recently, Berthoumieu & Carentz (2000) have re-examined Barreras’
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experiment. The equivalent axisymmetric system has been investigated by, among
others, Lasheras & Hopfinger (2000), Lasheras, Villermaux & Hopfinger (1998) and
Raynal (1997).

Most instability studies have dealt with the linear analysis of a liquid sheet moving
in quiescent air at infinity. Lin, Lian & Creighton (1990) found that the inclusion of
gas viscosity destabilizes the sheet and decreases the wavelengths of both the varicose
and the sinuous modes. The temporal growth of a perturbed viscous liquid sheet in
an inviscid gas was investigated by Li & Tankin (1991) and a viscosity-enhanced
instability uncovered. A temporal growth analysis of the previous configuration in
two and three dimensions was performed by Ibrahim (1994) and Ibrahim & Akpan
(1996). Two developed viscous-flow-type parabolic velocity profiles for the basic state
of the liquid and the quiescent gas were employed by Teng, Lin & Chen (1997);
absolute instability takes place for Weber numbers close to unity. Linear theory
implies no changes of the sheet thickness during the growth of the sinusoidal mode
and, thus, cannot be expected to predict liquid sheet breakup. Kim & Sirignano (2000)
integrated the inviscid conservation equations across the sheet thickness, treating it
as an independent variable; they found that nonlinear effects are stronger when
the spanwise and streamwise wavenumbers are close and they computed the sheet
thickness evolution in terms of those wavenumbers and the Weber number. Jazayeri &
Li (2000) presented an inviscid nonlinear instability analysis for a liquid sheet in a
gas medium at rest; sheet thickness variations leading to breakup result from the
superposition of the fundamental sinuous mode on the first harmonic (the varicose
one); the breakup characteristic time and length scales are found to decrease as the
initial disturbance amplitude increases and as the Weber number and the gas/liquid
density ratio grow.

Conditions relevant to twin-fluid atomization, i.e. thin liquid sheets sandwiched
between two high-speed air coflows have only been investigated in the last
decade using both linear and nonlinear instability analysis. Rangel & Sirignano
(1991) conducted inviscid two-dimensional linear and nonlinear studies; a vortex
discretization method was adapted for the nonlinear case, finding the disturbance
growth rate to be a function of the sheet thickness, the wavelength and the gas/liquid
density ratio. For small values of the latter the sinusoidal mode dominates, while for
values greater than 1/4 the varicose mode takes over. The vortex discretization method
was extended to three-dimensional nonlinear inviscid instability studies by Lozano,
Garcı́a-Olivares & Dopazo (1998), obtaining the sheet-thickness time evolution both
in the downstream and the spanwise directions; some indication of streamwise liquid
filament formation was presented. Yang (1992), Ibrahim (1994) and Cousin &
Dumouchel (1996) undertook inviscid linear studies for gas/liquid velocity ratios
greater than one; Ibrahim (1995) considered air compressibility. Li (1994) analysed
the instability of a viscous liquid sheet between two gas streams of unequal velocities.
The para-sinuous and the para-varicose modes, resembling but different from the
classical sinuous and varicose modes, were introduced; the values of the Weber
number and of the liquid and gas velocities control the two modes. Two parabolic
velocity profiles for the liquid and the gas basic flows were fitted, using a Kármán–
Pohlhausen-type method, by Hauke et al. (2001) to investigate the sinusoidal mode
growth rate of a liquid sheet with two high-speed air coflows; the liquid and gas
Reynolds numbers, the air/liquid momentum flux ratio, the Weber number, the
air/liquid velocity ratio and the ratio of a boundary layer characteristic thickness
to sheet thickness emerged as the relevant parameters of this linear stability study.
Lozano et al. (2001) compared these results with their experimental data.
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Compared to single-phase numerical solutions, interface tracking and the treatment
of surface tension are the two main additional problems to address when modelling
and computing gas/liquid flows with evolving interfaces (Scardovelli & Zaleski 1999).
Localizing the interfaces, applying correctly the stress balances at them and computing
their evolution can be achieved using either moving grids (Hirt, Amsdem & Cook
1974; Fritts & Boris 1979; Harten & Hyman 1983; Hyman 1983, 1984; Ryskin &
Leal 1984; Cristini, Blawzdziewics & Lowenberg 1998) or fixed ones (Hirt & Nichols
1981; Lötstedt 1982; Ashgriz & Poo 1991; Lafaurie et al. 1994; Mashayek & Ashgriz
1995; Zaleski 1996; Chen et al. 1999). Additionally, scalar markers (Hirt & Nichols
1981; Zaleski 1996) as well as particle tracers (Welch et al. 1966; Nichols & Hirt 1975;
Glimm, Marchesin & McBryan 1981) can be employed; while Welch et al. (1966)
distribute the particles within the whole volume to be traced, Nichols & Hirt (1975)
and Glimm et al. (1981) place the particles on the surface to be tracked. One of the
most popular methods, the volume of fluid (VOF) (Hirt & Nichols 1981), combines
a convection equation for a scalar marker with a fixed grid.

Brackbill, Kothe & Zemach (1992) developed the continuum surface force (CSF)
method to include surface tension effects in the numerical treatment of problems with
liquid/gas interfaces, adding a source term containing the surface tension action to
the momentum differential equation. Alternatively, Lafaurie et al. (1994) and Zaleski
(1996) considered this effect as a surface-tension tensor to be added to the viscous
stress tensor. Both methods can be easily combined with finite volume methods for
discretizing the conservation equations and with the VOF technique to follow the
interface evolution.

The main objective of this paper is to uncover the mechanisms that trigger the
sheet instability, and, particularly, to unveil the role of the interaction between the
liquid-sheet oscillation and the gas-coflow dynamic structures and of vorticity. It is
conjectured that the regular air vortex shedding process is probably related to the
sheet motion and the latter will necessarily affect the former. We conduct a study of
how the main parameters are likely to influence the development of the liquid-sheet
instability.

To this end, this paper addresses the computation of the very-near field behind a
nozzle tip injecting a thin, large-aspect-ratio liquid sheet into two symmetric high-
speed gas coflows. The very-near field is defined as the region immediately behind
the trailing edges of the nozzle plates where the vortex system originates. In this
region, which typically extends downstream for around 5 to 10 times the nozzle
width, the flow behaviour is dominated by the strong interaction between the vortical
systems, and is markedly two-dimensional. The oversimplifications of existing linear
and nonlinear studies for this region are overcome in this study by a general and
complete formulation of the two-dimensional problem. The computational domain
extends far upstream of the injection point; this allows the gas stream and liquid sheet
perturbation to be triggered and grow in a natural way. As already mentioned in
this Introduction, the flow visualizations obtained in the early 1990s clearly indicate
a connection between the origin of the spanwise/streamwise liquid filaments and the
existence of spanwise/streamwise vorticity structures behind the trailing edge of the
splitter plates; these are strong indications that the gas-phase instabilities must have
a direct bearing on the liquid-sheet deformation prior to breakup. In order to verify
this, state-of-the-art numerical methods for single-phase flows are combined with well-
established techniques for liquid/gas interface tracking and surface tension treatment.
In order to compare the dynamics of the liquid-sheet/gas-coflow system with the
gas-jet/gas-coflow one, a small part of the paper is dedicated to the computation of
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Figure 1. Two-dimensional single-phase gas-jet (a) and two-phase liquid-sheet
(b) geometries. The thickness e may be zero for infinitely thin plates.

single-phase flows and its validation for the injection geometries investigated later
for two-phase flows; simple experimental data are used for validation purposes.
The calculations are two-dimensional and the main concern of this paper is with
the injector very-near field, where the assumption of two-dimensionality might not
be a gross oversimplification. Comparison of predictions and existing experimental
data for sheet oscillation frequency and wavelength confirm that general trends are
reproduced well with these two-dimensional computations.

Section 2 presents the mathematical formulation for both single-phase and two-
phase flows, including conservation equations, boundary and initial conditions;
infinitely thin as well as thick solid plates are considered. The dimensionless single-
phase and two-phase flow equations are obtained. The numerical techniques are
presented in § 3, with special attention on the use of accurate time discretization
methods. The interface-tracking technique is next briefly described; the fractional-
step method adapted for this two-phase problem is also considered. The continuum
surface force method used to numerically treat the surface tension as a part of
the momentum equation is explained and the results of some validation tests are
given.

Section 4 presents the numerical predictions for single-phase plane jets, first for
thin-wall injectors and then for thick-walled nozzles. The results of the computations
for thin liquid sheets sandwiched by two high-speed gas-streams are contained in § 5;
the influence of the gas Reynolds number, the Weber number and the plate thickness
is extensively treated. Conclusions and future research are discussed in § 6.

2. Mathematical formulation
2.1. Single-phase flow

2.1.1. Governing equations

A two-dimensional gas flow with constant density, ρ, and viscosity, ν, between
two plates leaves their trailing edges, merging with two coflows of the same gas
constituting a gaseous jet (figure 1a). The plate thickness is e, and can be either finite
or zero (infinitely thin plates). The separation between the plates is h.
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The dimensionless dynamic governing equations are

∇ · u =0, (1)

St
∂u
∂t

+ (u · ∇)u = −∇p +
1

Re
∇ · τ ′, (2)

where u = (u1, u2) represents the velocity vector, p the pressure and τ ′ denotes the
viscous stress tensor, expressed as

τ ′ = {(∇u) + (∇u)T}. (3)

In the above equations, St = h/UT and Re = Uh/ν are the Strouhal and Reynolds
numbers, respectively. Since the interest in this work is in the very-near field of the
jet, its initial thickness, h, is taken as the characteristic length and U (either U1∞ or
U2∞) as the characteristic velocity. T is a characteristic period of vortex shedding or
jet oscillation, for example.

A species with mass fraction Y =1 between the plates and Y = 0 in the coflows is
considered in order to follow the mixing patterns; Y is sometimes termed the mixture
fraction, and obeys the transport equation:

St
∂Y

∂t
+ (u · ∇)Y =

1

ScRe
∇2Y, (4)

where Sc = ν/D is the scalar Schmidt number, and D the diffusion coefficient.

2.1.2. Boundary and initial conditions

On the solid surfaces the no-slip condition u = 0 is imposed. At x1 = 0 two Blasius
profiles are assumed for the coflows; this is equivalent to starting the computation
upstream (x1 < 0) and allowing the development of two boundary-layer-type profiles.
The resulting momentum thickness will be used, in a Reynolds number, to characterize
the case. Between the plates, −0.5h < x2 < 0.5h, flows with either fully developed
velocity profiles or two developing boundary layers are considered. Far away from
the plates u1 → U2∞.

Transient computations are performed starting from trivial initial fields u1(x, 0) = 0,
u2(x, 0) = 0, p(x, 0) = 0 and Y (x, 0) = 0.

2.2. Two-phase flow

2.2.1. Governing equations

A two-dimensional thin liquid sheet flows between two plates and is injected at their
trailing edges into two high-speed gas coflows as shown in figure 1(b). The thickness
of the liquid sheet is h, and the plates have a thickness e, which can be finite or zero
(infinitely thin plates). The liquid and the gas coflows enter the domain at x1 = 0 with
uniform velocities U1∞ and U2∞, respectively.

The velocity vector, the pressure, the density and the kinematic viscosity of phase
α are designated uα = (u1α, u2α), pα , ρα and να respectively, where α = 1 for the liquid
phase and α = 2 for the gas coflows. Considering both phases incompressible, the
dimensionless governing equations are

∇ · uα = 0, (5)

Stα

∂uα

∂t
+ (uα · ∇)uα = −∇pα +

1

Reα

∇ · τ ′
α, (6)

where

τ ′
α = {(∇uα) + (∇uα)

T} (7)
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is the viscous stress tensor and Stα =ωαlα/Uα , and Reα = Uαlα/να are, respectively,
the Strouhal and the Reynolds numbers for phase α; ω1 is the liquid-sheet oscillating
frequency, while ω2 is the vortex shedding frequency; l1 is either the unperturbed sheet
thickness, h, for fully developed viscous flow or the liquid boundary-layer momentum
thickness, θ1, for entrance-type flows; l2 may be either the gaseous boundary-layer
momentum thickness, θ2, or the plate thickness, e · U2 is U2∞ for the gas coflows, and
U1 is U1∞.

2.2.2. Boundary and initial conditions

At the entrance to the fluid domain, x1 = 0, uniform velocity profiles are assumed:

u11 = 1 for − 1
2
h � x2 � 1

2
h,

u12 = 1 for x2 < −
(

1
2
h + e

)
and x2 >

(
1
2
h + e

)
.

The velocity profiles then evolve along the plate from x1 = 0 to x1 = L, with developing
boundary layers for α = 1 and α = 2. Far away from the plates, within the gas coflows,
u12 → 1 for x2 → ±∞. On the solid plate surfaces uα = 0 for α =1 and 2.

At the interface, the kinematic boundary conditions are

u1 =
U2∞

U1∞
u2 (8)

and

Stα

∂SI

∂t
+ uα · ∇SI =0. (9)

The dimensionless dynamic stress balance condition is

(p1 − Mp2)n =

(
1

Re1

τ ′
1 − M

Re2

τ ′
2

)
· n − κ

We
n, (10)

where the pressures at α = 1 and α =2 are made dimensionless by ρ1U
2
1∞ and ρ2U

2
2∞,

respectively, M is the momentum flux ratio M = ρ2U
2
2∞/ρ1U

2
1∞, κ = −∇ · n is the mean

surface curvature made dimensionless with either h or θ1 and We = ρ1U
2
1∞θ1/σ is the

Weber number, σ being the constant surface tension coefficient.
The initial conditions for the two-phase calculations are as follows. At t = 0, a

flat (unperturbed) liquid sheet occupies the region −h/2 � x2 � h/2; the rest of the
domain is occupied by air. The liquid sheet is moving with the same velocity profile
as the inlet one (i.e. a top-hat profile) while the surrounding gas is considered at
rest. From these unperturbed initial fields, the perturbations in the flow develop in a
natural way after some transient time.

3. Numerical technique
3.1. Single-phase flow numerical techniques

A finite-volume method is employed to discretize the governing equations and the
corresponding boundary and initial conditions. A structured, Cartesian, staggered
mesh is used. All the model transport equations are considered to be of the following
common form, which is expressed in dimensional form so that the nomenclature
commonly used in the field of computational fluid dynamics can be retained:

∂ρϕ

∂t
= −∇ · (ρuϕ − Dϕ∇ϕ) + Sϕ = H (ϕ, t), (11)
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where Dϕ is the molecular-diffusion coefficient for variable ϕ and Sϕ stands for all
the source terms.

Centred differences are used to discretize the diffusive flux of ϕ and the convective
flux through a given cell face is calculated by using a combination of a first-order-
accurate, unconditionally stable term (the upwind scheme, Patankar 1980) and a
second-order anti-diffusive correction term; for the latter, a variation of the smart

scheme (Gaskell & Lau 1988), employing a flux limiting function (Waterson &
Deconnick 1994), is adopted.

3.1.1. Time discretization

The conservation equation for ϕ has been discretized using several temporal
schemes. In general, a three-time-level approach is used, given by the equation

(1+q1)ϕ
(n)−(1+2q1)ϕ

(n−1)+q1ϕ
(n−2) = 
t

[
q2H

(n)+(1−q2−q3)H
(n−1)+q3H

(n−2)
]
, (12)

where 
t is the value of the nth time step, ϕ(n) and H (n) are the values of ϕ and of the
right-hand side of equation (11) evaluated at time t (n), and q1, q2 and q3 are numerical
parameters. For q3 = q1 − q2 + 1/2, the scheme is second-order accurate; moreover, if
in addition q1 = 2q2 − 5/6 the scheme is a third-order accurate (Hirsch 1988).

The Euler explicit and implicit schemes are obtained if q1 = q2 = q3 = 0 and
q1 = q3 = 0, q2 = 1, respectively. If q1 = q3 = 0, q2 = 1/2 the Crank–Nicholson scheme is
recovered. The third-order scheme results from the assignment q1 = −1/6, q2 = −1/3
and q3 = 0. López-Pagés (2000) has assessed the performance of all four schemes
for a gaseous mixing layer behind a splitter plate; while the first-order schemes
do not reproduce some of the flow features encountered in previous experimental
investigations (Meiburg & Lasheras 1988), the second- and third-order ones correctly
capture the structure of the two-dimensional vortices very near the trailing edge of the
splitter plate; however, the fluctuating frequencies calculated with the three schemes
at three different downstream locations do not differ significantly.

3.1.2. Other solution details

The discretized equations are solved using a segregated solver. The simplest

algorithm (a variant of the simple algorithm, Patankar 1980) is used to calculate
pressure from the momentum and continuity equations. simplest differs from other
simple-like algorithms in that the diffusive and convective contributions to the Ak

coefficients in the momentum equations are treated separately: while the diffusive
part is treated implicitly, the convective contribution is treated explicitly; thus, the
finite-volume coefficients become reciprocal, and the convergence rate is accelerated.

The linear-equation solver is a two-dimensional, iterative-version of the Thomas or
TDMA algorithm which is similar in concept to the SIP procedure (Stone 1968).
Relaxation (either implicit or explicit) is used for all the variables to promote
convergence.

3.2. Numerical techniques for two-phase flows

Two features, namely the tracking of the interfaces and the treatment of the surface
tension, are specific to the two-phase flows considered in this research and therefore
special consideration is given to them in this section. Dimensional equations are used
in this section for the reasons indicated above for single-phase flows.

3.2.1. Interface tracking

The volume of fluid (VOF) method is used for tracking the interface. A scalar field
Φ(x, t) is defined, such that, for example, Φ =1 for the liquid phase and Φ = 0 for the
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gas phase. For a known Φ field, the interface is determined by intermediate values of
the scalar field, 0 <Φ(x, t) < 1. The scalar Φ obeys the conservation equation:

∂Φ

∂t
+ ∇ · uΦ = 0. (13)

For numerical purposes, a single auxiliary fluid may be defined in terms of Φ with
density and viscosity respectively equal to

ρΦ = Φρ1 + (1 − Φ)ρ2, µΦ = Φµ1 + (1 − Φ)µ2. (14)

The velocity field, u, to be used in equation (13) is provided by the governing
equations

∇ · u = 0, (15)

ρΦ

∂u
∂t

+ ρΦ(u · ∇)u = −∇p + ∇ · τ ′ + σκnδ(SI ), (16)

where τ ′ = µΦ{(∇u) + (∇u)T } and the surface tension is included in the momentum
equation (16) as a force concentrated at the interface SI by means of a Dirac delta
function δ(SI ).

For the spatial discretization, first-order upwind differencing and second-order van
Leer (1979) schemes are customarily used. For flows with liquid/gas interfaces, Hirt &
Nichols (1981) propose a scheme (HN hereafter) based on the donor–acceptor scheme
of Ramshaw & Trapp (1976). In order to determine the interface orientation within a
finite-volume cell, this is approximated by a straight-line segment in two-dimensional
flows, or by a plane portion in three-dimensional ones. The normal vector to the
interface is calculated in terms of Φ as: n = ∇Φ .

López-Pagés (2000) has shown that the HN scheme is more accurate than the
second-order van Leer one, and that it retains its accuracy with non-uniform Cartesian
grids; further, it is easily generalized to three-dimensional codes.

3.2.2. Time integration

Apart from the limitations on the time step size imposed by the explicit treatment
of equation (13), its time integration scheme may be a source of errors in tracking the
interface. The fractional-step technique (Yanenko 1971; Hirsch 1988; Barley 1988) is
used to alleviate this difficulty. Equation (13) may be discretized in two dimensions
as

Φ (n) = L
(n)
1 L

(n)
2 Φ (n−1) + O

(

t (n)2

)
, (17)

where L
(n)
i = 1 +
t (n)S

(n)
i , S

(n)
i = −ui(x, t)∂/∂xi and i =1, 2.

Several combinations of the operators L
(n)
1 and L

(n)
2 are possible in order to

reproduce the action of the spatial operators S
(n)
1 and S

(n)
2 . In this work a version of

the Yanenko sequential scheme is used, namely

Φ (n) = L
(n/2)
1 L

(n/2)
2 L

(n/2)
2 L

(n/2)
1 Φ (n−1), (18)

where L
(n/2)
1 = 1 + (
t (n)/2)S(n)

1 and L
(n/2)
2 = 1 + (
t (n)/2)S(n)

2 .

3.2.3. Numerical treatment of surface tension

The continuum surface force (CSF) method (Brackbill et al. 1992) is used in
this work in combination with the finite-volume discretization of the conservation
equations and the VOF technique for interface tracking. The last term in equation (16)
represents the surface tension acting on every control volume containing a portion of
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Figure 2. Integration volume Vε for an interface element dSI .

the interface (see figure 2); in the CSF method that term is determined by the relation
−∇Φ̃ = nδ(SI ). The function Φ̃(x, t) is known as the smoothed scalar field and it is
obtained as an average of Φ in neighbouring cells (W , E, S, and N)

Φ̃P = C1ΦP + C2(ΦW + ΦE + ΦS + ΦN ) + C3(ΦNE + ΦNW + ΦSE + ΦSW ),

where C1 = 0.5, C2 = 0.35 and C3 = 0.15.
For the surface-tension term, the normal to the interface is obtained in terms of Φ̃ .

A normal vector is assigned to every corner of the cell containing the interface; the
normal components at any mesh node are obtained by averaging the values at the
four corners. Next, the mean interface curvature, κ = −∇ · n is obtained.

When surface tension is included in the calculation, the time step used must allow
resolution of the propagation of the capillary mode with the largest wavenumber
vector, namely

k1m =
π


x1min

, k2m =
π


x2min

, (19)

where 
x1min = min(
x1P ) and 
x2min =min(
x2P ), for all grid points. If the speed of
an interfacial capillary wave is expressed as c1 = σκ/ρ1, the time step size to resolve
the capillary mode is given by


tP = min

{(
ρ1(
x1P )3

2πσ

)1/2

,

(
ρ̄1(
x2P )3

2πσ

)1/2
}

, (20)

with


tST � min(
tP ), (21)

for all grid points. Details on the numerical implementation of this procedure can be
found in López-Pagés (2000).

Figure 3 shows the evolution of an initially almost square liquid domain being
convected along its diagonal, (u1, u2) = (1, 1), under the action of the surface tension.
The fractional-step method is used for the time integration, while the HN scheme is
employed for the convective fluxes. The large value of the surface force at the corners
causes the liquid to adopt a shape where the corners are located where the sides had
previously been. For large times, a circular two-dimensional drop results under the
action of the viscosity and the surface tension. A generalization to three dimensions
is shown by López-Pagés (2000).
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(a) (b)

(c) (d )

x2

x1

Figure 3. Restoring action of the surface-tension force: contours of smoothed scalar marker
field Φ̃ with superimposed surface-tension-force vectors at four times: (a) t = t0, (b) t = 2t0,
(c) t = 3t0 and (d) t = 4t0.

3.3. Computational domain and boundary conditions

All the calculations reported in this paper focus on the near-field region of the
nozzle tip. In order to minimize any unwanted numerical influence of the boundary
conditions on the phenomena taking place in the near-field region, the computational
domain is chosen to be much larger than the liquid sheet thickness h (typically 30
times in the longitudinal direction and 20 in the transverse one).

Boundary conditions are implemented implicitly. At the domain inlets, mass flow
rates and momentum fluxes are prescribed using the profiles detailed in § § 2.1.2
and 2.2.2 above. At the other domain boundaries (downstream and top and bottom
planes), pressure-type boundary conditions are used. The pressure just outside the
domain is presumed to be the reference one (zero for this incompressible flow), and
an outflow/inflow results when the in-cell pressure is respectively above/below the
outside pressure. Since the outflow at the exit boundaries is not fully developed, and
indeed there can even be an inflow, a zero-gradient boundary condition would provide
unphysical results.

4. Results for single-phase jets
López-Pagés (2000) has validated the finite-volume code for single-phase flows, and

has used it extensively to analyse mixing layers behind thin and thick trailing edges,
as well as two-dimensional jets with thin and thick wall injectors. Pressure profiles
along the flow direction reproduce the shapes obtained by asymptotic expansion
techniques (Stewartson 1969; Smith 1982) for two-dimensional wakes or mixing layers
behind a thin plate; the cross-stream profiles of the longitudinal flow component and
the mixture fraction correctly collapse on a single non-dimensional curve. Using a
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third-order implicit time-discretization scheme, the vortex structure visualized by
Meiburg & Lasheras (1988) in the mixing layer of a thick plate between two streams
with equal velocities is correctly captured by the code; the trends of the Strouhal
number as a function of the Reynolds number are also predicted well (Oertel 1990).
An extensive study of mixing layers behind thin- and thick-walled plates, varying the
Reynolds numbers, the velocity ratios and the density ratios of the two streams, has
been systematically conducted.

The main results for two-dimensional single-phase jets are presented now. The aim
of this part of the study is to investigate the role of the plate thickness in the onset
and sustainability of the instability, and to serve as a basis for the later comparison
with the liquid-sheet/gas-coflow system.

We turn our attention first to the case where a gas jet is sandwiched between two
equal infinite gas coflows with infinitely thin solid plates (figure 1a, e = 0). When
the three streams have identical velocities, López-Pagés (2000) has shown that the
merging of the three streams at the plate trailing edges causes the appearance of
instabilities in the neighbourhood of the injection and downstream of it; however
the flow conditions do not allow for the maintenance of the instability and the
perturbations eventually die for all Reynolds numbers investigated (ReL = 650, 3240,
6480, 12 960 and 19 430). López-Pagés (2000) has noted that the perturbation survival
time increases with the Reynolds number.

Unequal velocities in the merging streams allow the instability to be sustained.
Figure 4 shows the non-dimensional vorticity patterns for the two velocity ratios
U2∞/U1∞ =30 and 3, and both cases are unstable. The more detailed study by
López-Pagés (2000) shows the flow to be unstable for U2∞/U1∞ � 3. It also shows, as
illustrated by figure 4, that vortex formation starts further downstream as the velocity
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Figure 5. Single-phase case: transient evolution of the transverse velocity component, u2, at
x1 = L and x2 = ±0.5(h + e) (left) and x2 = 0 (right) for (a) ReL = 650, and (b) 19 430. Coarser
dots in the left-hand images represent values at the negative x2 coordinate.

ratio decreases. For the larger velocity ratio, vortex formation takes place immediately
after the trailing edges, due to the momentum deficit in the central stream.

We now turn our attention to the case where the streams are separated by thick
plates (figure 1a, with e/h = 1). Figure 5 shows the transient time evolution of the
transverse velocity component, u2, at the jet exit for a velocity ratio U2∞/U1∞ =1 and
two different Reynolds numbers, ReL = 650 and 19 430. (The case ReL = 3240 was
also studied, but the results are not shown.) In contrast with the zero-thickness case,
which is stable for all ReL when the velocity ratio is U2∞/U1∞ = 1, this finite-thickness
case shows the development of sustained instabilities for all except for the smallest
ReL, which yields damped perturbations. The time for the initiation of the velocity
perturbation at the jet centreline decreases as the Reynolds number increases. The
time evolutions at the two points x2 = ±0.5(h+e) are half a period out of phase, until
the perturbation growth starts. As a consequence of the jet/wake structure of this
flow, two characteristic frequencies are measurable, namely f0 = 0.4 and 1.4 (at the jet
centreline) and f± =0.4 and 2.8 (at the other two points) for ReL =3240 and 19 430,
respectively. Figure 6 displays the corresponding vorticity isocontours. The interaction
between the jet and the coflows also presents some features of wake structures, and
the mixed jet/wake structure of this flow is apparent from the vorticity isocontours.
For ReL smaller than 12 960 (among those investigated by López-Pagés 2000), there
is only a single flow frequency; for ReL = 19 430 two frequencies exist. The interaction
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among the vortical systems shed from the four corners at the trailing edges gives rise
to the presence of the subharmonic. Figure 6 shows the difference between an ordered
flow with well-defined attached recirculation zones for ReL = 650 and complicated
vorticity patterns for ReL = 19 430. The Strouhal number as a function of the Reynolds
number is plotted in figure 7. For Ree (Reynolds number based on plate thickness)
smaller than approximately 1300 the curve is monotonically increasing, as customary
in wake flows. The decrease for Ree greater than 1300 is probably associated with the
double jet/wake nature of the flow structure.

The role played by the velocity ratio is examined next. Figure 8 presents the transient
evolution of the transverse velocity for three velocity ratios, U2∞/U1∞ = 30, 3 and 1
and the corresponding vorticity isocontours. For U2∞/U1∞ = 30, the jet velocity is so
small compared to that of the coflows that the jet/coflow interaction is rather limited.
From the animation of the computational results, it is evident that the jet hardly
penetrates the flow downstream of the trailing edges; the intense vortex shedding
from the upper and lower corners immediately disrupts the jet entering the flow at
x1 > L. The vorticity contours are qualitatively similar to those obtained for the wake
flow behind a single obstacle of thickness (h + 2e).

As the velocity ratio decreases (U2∞/U1∞ = 3) a small jet/coflow interaction is
apparent; the transient perturbations of transverse velocity at the jet centreline start
earlier. Further reductions of the velocity ratio increase the interactions among the
three streams after they merge, decreasing both the time of appearance of velocity
fluctuations and their amplitude; smaller vorticity structures control the flow dynamics
and a loss of spatial periodicity is observed. Unlike the same flow with infinitely
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U2∞/U1∞ f+ (kHz) f− (kHz) f0 (kHz)

30 1.5–3.0 1.5–3.1 1.5
6 1.7–3.4 1.7–3.3 1.7
3 3.3 3.5 1.7
1.5 2.6 2.7 1.5
1.0 2.8 2.8 1.4

Table 1. Characteristic frequencies for the transverse velocity oscillation behind the injection
plates for five velocity ratios; f+ for upper plate; f− for lower plate; f0 at the jet centreline
(single-phase flow).

thin plates, the flow is now unstable for a velocity ratio of 1 (figure 8c). For the
characteristic frequencies, the results in table 1 are obtained; no saturation frequency
is reached. For the two larger velocity ratios, subharmonics are present in the velocity
perturbations just behind the plates; these frequencies also identify the fluctuations
at the jet centreline, with values very close to those corresponding to the vortex
shedding behind a thick plate (López-Pagés 2000). As the velocity ratio decreases no
subharmonics are detected just behind the plates, and f0 at the jet centreline is now
the only subharmonic.

5. Results for liquid sheets
In this Section the results for the dynamics of a thin liquid sheet (a liquid jet)

sandwiched between two high-speed gas coflows are presented. The properties (density
and viscosity) of water and air at ambient temperature and pressure are taken for
the liquid and gas, respectively. For the velocities in this study, the gas is considered
incompressible.

Only two-dimensional cases are studied, which may affect the comparison of the
numerical predictions with three-dimensional experimental results; for instance, the
experimentally observed streamwise liquid filaments cannot be predicted. However,
this study investigates the very-near field behind the injection point, where the
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characteristic flow structures may well be considered approximately two-dimensional.
This work is expected to be a highly relevant first step to unveil the way in which the
liquid sheet instability is triggered as the liquid and gas streams merge.

In this section, the boundary-layer momentum thickness for the liquid, θ1, and its
counterpart for the gas coflows, θ2, are often used as the reference length scale. These
are numerically calculated at the exit of the plates, from the boundary-layer profiles
which develop on the liquid and fluid sides of the plate.

This section investigates the role in the instability of the main flow parameters, i.e.
the plate thickness, the coflow Reynolds number, the surface tension, and the slip
condition for the contact line. Table 2 summarizes the values of the flow parameters
in the cases studied. The location of the liquid sheet in the pictures is determined by
using scalar marker, Φ , isocontours to trace the interface location.
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Case Thickness U2∞ (m s−1) M θ2 (m) Reθ1
Reθ2

We

1 Thick 10 0.12 8.25 × 10−5 66 53 —
2 Thick 20 0.48 5.83 × 10−5 66 76 —
3 Thick 30 1.07 4.76 × 10−5 66 92 —
4 Thick 50 2.97 3.67 × 10−5 66 119 —
5 Thick 100 11.89 2.61 × 10−5 66 169 —
6 Thick 30 1.07 4.76 × 10−5 66 92 0.9
7 Thin 30 1.07 4.76 × 10−5 66 92 —

Table 2. Characteristic values of the parameters used for each computational simulation for
the liquid-sheet/gas-coflow system. U1∞ =1ms−1.

10 20 30
0

3

6

9

12

15

18

x2—e

x1/e

Figure 9. Liquid sheet location and streamlines in the gas phase for Reθ2
= 53 and M = 0.12

(Case 1 of table 2).

5.1. Influence of the gas-coflow Reynolds number

For low gas-coflow Reynolds numbers, the configuration appears to be stable. Thus,
figure 9 displays the liquid-sheet location and gas-phase streamlines at the beginning
of an oscillation period for Reynolds number based on gas momentum thickness
Reθ2

= 53 (which yields a momentum flux ratio M = 0.12). Surface tension is not
considered in the model for the time being. No significant liquid-sheet deformations
appear and no tendency for the sheet to fracture or break up is observed, although
mild sinusoidal oscillations are apparent. Downstream of the plate trailing edges the
two gaseous wakes develop a two-layer vortex structure, coupling the gas motion to
that of the liquid. The pressure and viscous stress fields induced by the vortices in the
gas wakes on the two sides of the liquid sheet determine the overall dynamics; the
motion of the liquid sheet, in turn, influences the vortex dynamics.

The sheet dynamics change substantially as the gas-coflow Reynolds number
increases. Thus, for Reθ2

= 76 (M = 0.48), the sheet presents large deformations and a
clear tendency to thinning and fracturing, as shown in figure 10; it is pertinent to keep
in mind that the surface tension is not modelled. The influence of the liquid-sheet
deformation on the vortex shedding process and on the wake vortical structures seems
crucial; both from this figure and from the animated films of these computational
results (López-Pagés 2000) it is apparent that the gas may posses a slow upstream
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instants of maximum lateral liquid-sheet displacement (Case 2).

velocity near the lower corner (13(b) and 13(c)) as the liquid sheet moves downward.
The same remark applies for the upper corner of the trailing edges as the sheet
flaps upwards. Figure 11 presents the isobars corresponding to the two instants of
maximum lateral displacement in figure 10; the pressure differences across the two
interfaces change sign, driving the sheet motion up and down alternately.

As the gas-coflow velocity is increased to yield Reθ2
= 92 (M = 1.07) or Reθ2

= 119
(M = 2.97) no qualitatively significant changes are apparent. Figure 12 depicts the
sheet and gas flow structure as well as the isobars for Reθ2

= 92. As the dynamic
pressures of the gas coflows are comparable to that of the liquid flow, as indicated by
the momentum flux ratio, M = 1.07, the sheet flapping proceeds with larger frequencies
and amplitudes and the vortex shedding frequency increases. The sheet tendency to
fracture (still zero surface tension) occurs closer to the injection, resulting in a smaller
intact penetration length. The sheet curvatures are greater than in the previous cases
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(Case 3).

and the characteristic sizes of the gas vortices decrease. The pressure characteristic
values are comparable to those of Reθ2

= 76.
For higher gas-coflow Reynolds numbers (Reθ2

= 119, M = 2.97) the flow pattern is
much the same except for the confining effect of the coflows upon the sheet (figure 13).
This is due to the large value of the momentum flux (M =2.97), which is translated
into a moderate lateral sheet displacement; while for Reθ2

= 76 and 92 the sheet
moves laterally beyond the plates (x2 = ±0.5(h + e)), for the higher Reθ2

= 119 the
sheet amplitude is smaller. The pressure values are between one and two orders of
magnitude greater than those for lower Reynolds numbers, and the sheet therefore
undergoes significantly greater upward and downward accelerations. The vortex sizes
in the vicinity of the nozzle are smaller than in the previous cases.
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Figure 13. As figure 12 but for Reθ2
= 119 and M = 2.97 (Case 4).

For the highest Reynolds number among those studied, Reθ2
= 169 (M = 11.89), the

liquid sheet is significantly deformed (figure 14) and a clear tendency to fracturing is
apparent just after the liquid leaves the plates; the liquid fragments detached from
the sheet are violently pushed forward by the gas coflows, while they continue to be
deformed and fractured. The pressure magnitudes also increase significantly compared
to previous cases.

In order to quantitatively characterize the dynamics of the liquid sheet for the
five gas-coflow Reynolds numbers discussed above, the wavelength λ of the mode
developing over the interface, the sheet oscillation frequency ω1, the gas vortex
shedding frequency ω2, and the interface perturbation phase speed c, are determined.
To this end, sequential images of the steady-state oscillation have been analysed and
processed. In order to determine the oscillation period, two images are selected in
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which the sheet location approximately coincides, and the time elapsed between the
two pictures is established; this process is performed at the sheet exit, very near
the plate trailing edges. The sheet oscillation frequency, then, results from the direct
sheet/coflow interaction. The reported oscillation frequency, ω1, is computed from
the average value of the period determined over many oscillations. The wavelength is
directly measured for several images during the sheet evolution and, then, averaged
over several measurements.

For Reθ2
= 53, the sheet frequencies were determined at two downstream coordinates

(x1 = 3 and 28, dimensionless). The values of the frequencies at the two locations
coincide. The errors in the determination of ω1 are associated with the time step size,

t and the grid cell size in the downstream direction (
t = 10−3 s for the case with
Reθ2

= 53 and 
t = 10−4 s for the cases with Reθ2
�76). The relative error, εω1

, is of
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Case Reθ2
λ (m) ω1 (Hz) ω2 (Hz) c (m s−1) St1e St2e

1 53 7.5 × 10−3 170 823 0.20 2.7 × 10−2 13.1 × 10−3

2 76 12.6 × 10−3 834 897 1.67 13.3 × 10−2 7.14 × 10−3

3 92 7.2 × 10−3 1244 1265 1.42 19.8 × 10−2 6.71 × 10−3

4 119 3.4 × 10−3 2096 2087 1.13 33.4 × 10−2 6.64 × 10−3

5 169 2.0 × 10−3 3286 3254 1.05 52.3 × 10−2 5.18 × 10−3

Table 3. Characteristic parameters for the liquid-sheet oscillation and the gas vortex shedding
process. Strouhal numbers for both phases are based on the plate thickness as the characteristic
length.

Case ελ εω1
εω2

εc

1 1.33 5.40 13.11 6.73
2 0.79 1.32 1.43 2.11
3 1.38 1.98 2.01 3.36
4 2.94 3.34 3.32 6.28
5 5.00 5.47 5.18 10.47

Table 4. Relative errors for the determination of the characteristic parameters in the
liquid-sheet dynamic and the gas vortex shedding frequency.

the order 
t/T1, where T1 is the specific sheet oscillation period. As 
x1 = 10−4 m for
the cases studied, the relative error, ελ, in the estimation of the interfacial wavelength,
λ, is of order 
x1/λ. The relative error in the computation of the perturbation phase
speed, εc, is of order εω1

+ ελ.
The gas vortex shedding frequency behind the plate trailing edges, ω2, is determined

from the transverse profiles of the downstream velocity component, u1(x2). This is
analysed at a short distance from the exit (x1/h= 0.5) and two instants are identified
for which the u1(x2) profiles approximately coincide for the gas-phase region. By
determining the time elapsed between the two events, the period of the vortex
shedding process, T2, is estimated and, from it, ω2 is calculated. Two values for the
period T2 are thus obtained and an averaged value is calculated from the different
estimations. The relative error, εω2

, is of order 
t/T2.
Tables 3 and 4 present the values of λ, ω1, ω2 and c, as well as the relative errors

of their estimations, for the five Reynolds numbers analysed above. The wavelength
λ systematically decreases as the coflow Reynolds number increases from Reθ2

= 76,
while for the smallest Reynolds Reθ2

= 53 it is smaller than for Reθ2
= 76; the phase

speed, c, follows a similar trend. For the flows with Reθ2
� 76, c is not significantly

different from the liquid-sheet exit velocity once the relative errors for λ and ω1 are
taken into account.

Figure 15 shows the variation of the Strouhal numbers of both the liquid sheet,
St1e, and the gas vortex shedding, St2e, as functions of the momentum-flux ratio, M ,
as well as that of St2e as a function of the gas-coflow Reynolds number. Increasing M

causes stronger interactions among the gas coflows and the water jet, leading to larger
instabilities and sheet oscillation frequencies which are reflected in the increase in the
liquid Strouhal number. However, while the liquid Strouhal number increases with
M , that for the gas follows the opposite variation, i.e. increasing M through either
larger gas velocities or smaller water injection speed implies a reduction in the vortex
shedding frequency. On the other hand, St2e as a function of the Reynolds number



24 E. López-Pagés, C. Dopazo and N. Fueyo

6

5

4

3

2

1

0

14

12

10

8

6

4

16

12

8

4

0 2 4 6 8 10 12

0 2 4 6 8 10 12

0 1000 2000 3000 4000 60005000 7000

(×10)

(×103)

(×103)

St1e

St2e

St2e

M

M

Re2e

(a)

(b)

(c)

Figure 15. Strouhal numbers (a) St1e =ω1e/U1∞ and (b) St2e = ω2e/U2∞, as functions of
momentum-flux ratio, M = ρ2U

2
2∞/ρ1U

2
1∞. (c) Strouhal number St2e as a function of the

gas-coflow Reynolds-number, Re2e = eU2∞/ν2.

follows the common trend for single-phase wakes (Wen & Lin 2001; Oertel 1990).
This effect is explained through the presence of the liquid sheet, which obviously
influences the vortex shedding process. Recall that when the liquid sheet is replaced
by a gas jet the Strouhal number–Reynolds number curve (figure 7) is quite different
from that in figure 15(c). Note that figures 15(b) and 15(c) display similar trends, as
M is proportional to (U2∞/U1∞)Re2e.

Figure 16 depicts the vortex shedding frequency as a function of the sheet oscillation
frequency; the values of M are indicated on the curves. For small values of M (inertia
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Figure 16. Gas-coflow vortex shedding frequency, ω2, as a function of the liquid sheet
oscillation frequency, ω1.
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Figure 17. Liquid-sheet Strouhal number St1 (based on momentum thickness θ1), as a function
of the gas-coflow Reynolds number Re2 (based on momentum thickness θ2). Diamonds
correspond to numerical estimations from the present work and triangles to experimental data
from Lozano et al. (2001).

forces in the gas smaller than inertia forces in the liquid or, equivalently, the gas
dynamic pressure smaller than the liquid dynamic pressure), the gas streams hardly
interact with the liquid sheet through weak pressure normal stresses; the gas vortex
shedding frequency remains, approximately, constant while the liquid sheet oscillates
with its own characteristic frequency. For M > 0.48 or, rather, M of order unity
or greater, the gas vortex shedding frequency and the sheet oscillation frequency
are, within numerical estimation error, almost identical. This is a new finding which
uncovers, for this range of M , the coupling between both vortex shedding mechanisms.
Such coupling offers the possibility of systematically influencing the atomization
process through the modification of the gas vortex shedding pattern.

The liquid Strouhal number and dimensionless instability wavenumber, λ∗, as
functions of the Reynolds number, Reθ2

, are presented in figures 17 and 18,
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Figure 18. Dimensionless instability wavelength as a function of the gas Reynolds number
(based on gas-flow momentum thickness θ2). Diamonds correspond to numerical estimations
from the present work and triangles to experimental data from Lozano et al. (2001).

respectively; the calculated values compare reasonably well with the experimental
data of Lozano et al. (2001).

5.2. Influence of the surface tension

A finite surface-tension coefficient (We = 0.9) is now considered, while all the other
parameters of the third case examined above (Reθ2

= 92, M = 1.07) are maintained
the same. Figure 19 shows the streamlines and the sheet location at two different
times, during approximately half a period of its oscillation; a distinguishing feature
of this case, compared to the equivalent one with no surface tension (figure 12),
is the significant increment of the liquid-sheet penetration length (intact length)
into the gas coflows. Even for M = 1.07, the stabilizing effect of the surface tension
appears to prevent large sheet deformations and delays fracturing and breakup
up until appropriate large local curvatures appear on the sheet interfaces. The
oscillations are approximately sinusoidal. However, the sheet without and with
surface tension effects oscillates with approximately the same frequency. Moreover, the
perturbation wavelength with surface tension, λ≈ 6.8 × 10−3 m, is not very different
from that without, λ≈ 7.2 × 10−3 m. Vorticity structures appear more elongated
in the downstream flow direction than for the case with no surface tension, as
a consequence of the smaller amplitudes of the sheet lateral motions; layers of
double vortical structures are clearly present in the gas coflows. The sheet oscillation
obviously modifies the gas vortex shedding process, while the pressure field induced
by these vortices establishes the conditions for the sheet oscillation. A sheet oscillation
frequency of ω1 ≈ 1223 Hz is calculated which, within the previous error estimates,
coincides with that of the same flow without surface tension, ω1 ≈ 1244 Hz.

5.3. Influence of the plate thickness

Infinitely thin plates are now considered, with flow parameters corresponding to
the (finite-thickness) case with Reθ2

= 92 and M = 1.07 of § 5.1. The basic instability
mechanisms are similar in both cases. Figure 20 displays an instant of the sheet
oscillation and the corresponding pressure isocontours. The characteristic sizes of the
vorticity structures are smaller than for the finite-thickness configuration (figure 12),
due to the zero plate thickness; the strong and direct interaction among the liquid
sheet and the two coflows leads to larger vorticity values; the latter induce pressure
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Figure 19. Liquid-sheet location and streamlines at two instants during the liquid-sheet
oscillation period. Finite surface tension (We = 0.9) for Reθ2

= 92 and M = 1.07 (Case 6).

values which are two orders of magnitude greater than those for the finite-thickness
situation and, consequently, there is a significant increase of the sheet oscillation
frequency. The liquid sheet undergoes important deformations very near the injection
section, displaying a clear tendency to rupturing (zero surface tension is considered).
Table 5 summarizes the values of λ, ω1 and c for finite-thickness and infinitely thin
plates. The infinitesimal thickness reduces the wavelength and increases the sheet-
oscillation frequency yielding a phase speed not very different (12% lower) from that
for the thick-plate case.

6. Conclusions and future work
The two-dimensional dynamics of a flat thin liquid sheet in two parallel high-speed

gas coflows has been numerically investigated very near the injection point, where the
three streams merge behind the trailing edges of thin and thick solid plates.

As a frame of reference, some results have been provided with the thin liquid sheet
being replaced by a gaseous jet of a density identical to that of the parallel coflows.
The mixed jet/wake structure of the single-phase flow yields stream frequencies at
several locations significantly greater than those for the two-phase case: for velocity
ratios U2∞/U1∞ ≈ 30, the estimated frequencies for the former range from 1.5 to
3.1 kHz, while those for the latter are 1.265 kHz and 1.244 kHz for the gas vortex
shedding and for the liquid-sheet oscillation frequencies, respectively. Due to the large
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Figure 20. Liquid-sheet location with streamlines and the corresponding pressure isocon-
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= 92 and M = 1.07 (Case 7).

Case λ (m) ω1 (Hz) c (m s−1)

3 7.2 × 10−3 1244 1.42
7 3.4 × 10−3 2307 1.25

Table 5. Characteristic parameters of the liquid sheet oscillation for Cases 3 (thick plate
trailing edges) and 7 (infinitely thin plate trailing edges).

sheet inertia (ρ1/ρ2 ≈ 103), the flow oscillations are slowed down in the presence of
the liquid. At the same time, the vortex-shedding process is substantially modified
by the liquid-sheet flapping motion; some upstream inverse flow may take place near
the upper and lower corners of the thick solid plates, coinciding with upward or
downward motion of the sheet, respectively.

The Strouhal number as a function of the Reynolds number for single-phase flow
(figure 7) follows the usual trend for wakes for Ree � 1300. The reduction can be
attributed to the mixed jet/wake nature of the flow; the presence of the jet reduces
the wake vortex-shedding frequencies. On the other hand the gas Strouhal number
monotonically decreases as the Reynolds number increases (figure 15c), due to the
influence of the sheet motion on the gas vortex-shedding process. Values of the
Strouhal number vary from order 10−4 for the former case to 10−2 for the latter.

The pressure and strain fields induced by the vorticity patterns in the gaseous
streams are responsible for the liquid-sheet dynamics. As the gas Reynolds number
increases the vortical flow structures are modified; their tendency to grow laterally is
balanced by the action of the confining gas flow, which also elongates the vortices in
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the downstream direction. In parallel, the dimensionless isobars span over six orders
of magnitude, increasing with the Reynolds number; this translates into an increment
of the sheet oscillation frequency, ω1, and reduction of the perturbation wavelenght, λ,
as the Reynolds number increases. Computed and experimentally determined values
of ω1 and λ compare reasonably well.

Estimated gas vortex-shedding frequencies are, within numerical determination
error, identical to liquid-sheet oscillation frequencies for momentum flux ratios, M ,
greater than unity. This is interpreted in terms of the dynamic pressures of the gas
and liquid flows; when the former is equal to or greater than the latter, the gas and
liquid dynamics are perfectly coupled. For M < 1.0 the vortex-shedding process and
the sheet oscillation proceed independently.

Considering surface tension (We = 0.9) does not significantly alter the instability
development process. The vortices are more elongated in the downstream direction
compared to the case with no surface tension (We = ∞). The stabilizing effect of the
surface tension is also apparent from larger intact sheet lengths.

The next obvious extension of this work is to address the three-dimensional case.
The influence of the liquid/gas density ratio on the flow dynamics will also be
explored; while some existing, and otherwise successful, codes are limited to values
less than 10, the present algorithm seems to be able to handle values as large as
103 with no problem. The case of zero gas velocity, U2∞ = 0, of relevance to pressure
atomizers, will also be taken up.

The present paper is a part of E. López-Pagés’ PhD Dissertation, who gratefully
acknowledges the support under an AECI (Spanish International Cooperation
Agency) Fellowship. Drs A. Lozano and F. Barreras provided some helpful comments
on the original manuscript.
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